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Summary

1. A resource selection function is a model of the likelihood that an available spatial unit will be used by an ani-

mal, given its resource value. But how do we appropriately define availability? Step selection analysis deals with

this problem at the scale of the observed positional data, by matching each ‘used step’ (connecting two consecu-

tive observed positions of the animal) with a set of ‘available steps’ randomly sampled from a distribution of

observed steps or their characteristics.

2. Here we present a simple extension to this approach, termed integrated step selection analysis (iSSA), which

relaxes the implicit assumption that observedmovement attributes (i.e. velocities and their temporal autocorrela-

tions) are independent of resource selection. Instead, iSSA relies on simultaneously estimating movement and

resource selection parameters, thus allowing simple likelihood-based inference of resource selection within a

mechanistic movementmodel.

3. We provide theoretical underpinning of iSSA, as well as practical guidelines to its implementation. Using

computer simulations, we evaluate the inferential and predictive capacity of iSSA compared to currently used

methods.

4. Our work demonstrates the utility of iSSA as a general, flexible and user-friendly approach for both evaluat-

ing a variety of ecological hypotheses, and predicting future ecological patterns.

Key-words: conditional logistic regression, dispersal, habitat selection, movement ecology, random

walk, redistribution kernel, resource selection, step selection, telemetry, utilisation distribution

Introduction

Ecology is the scientific study of processes that determine the

distribution and abundance of organisms in space and time

(Elton 1927). Hence, asking how and why living beings

change their spatial position through time is fundamental to

ecological research (Nathan et al. 2008). Animal movement

links the behavioural ecology of individuals with population

and community level processes (Lima & Zollner 1996). Its

study is consequently vital for understanding basic ecological

processes, as well as for applications in wildlife management

and conservation.

Whether basic or applied, common to many empirical

studies of animal movement is the aspiration to reliably pre-

dict population density through space and time by modelling

the spatiotemporal probability of animal occurrence, also

known as the utilisation distribution (Keating & Cherry

2009). Despite much progress in statistical characterisation

of animal movement and habitat associations, our ability to

predict utilisation distributions is limited by our understand-

ing of the underlying behavioural processes. Indeed, includ-

ing explicit movement behaviours into spatial models of

animal density has led to improved predictive performance

(Moorcroft, Lewis & Crabtree 2006; Fordham et al. 2014).

Deriving predictive space-use models based on the beha-

vioural process underlying animal movement patterns is of

particular importance when dealing with altered or novel

landscapes that might differ substantially from the landscape

used to inform the models.

Over the past three decades, a great deal of research has been

dedicated to explaining and predicting spatial population dis-

tribution patterns based on underlying habitat attributes (often

termed resources). In that regard, much focus has been given

to estimating resource selection functions (Manly et al. 2002)–
phenomenological models of the relative probability that an

available discrete spatial unit (e.g. an encountered patch or

landscape pixel) will be used given its resource type/value (Lele

et al. 2013). Indeed, its intuitive nature and ease of application

has made resource selection analysis (RSA) the tool of choice

for many wildlife scientists and managers seeking to use envi-

ronmental information in conjunction with animal positional

data (Boyce &McDonald 1999; McDonald et al. 2013; Boyce

et al. 2015).

Whereas much progress has been gained in the application

of RSAs to animal positional data, the problem of defining*Correspondence author. E-mail: avgar@ualberta.ca
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the appropriate spatial domain available to the animal

remains as a major concern (Matthiopoulos 2003; Lele et al.

2013; McDonald et al. 2013; Northrup et al. 2013).

Weighted distribution approaches deal with this problem by

modelling space-use as a function of a movement model and

a selection function, but most weighted distribution models

are challenging to implement (but see Johnson, Hooten &

Kuhn 2013). Matched case–control logistic regressions

(CLRs; also known as discrete-choice models) may be con-

sidered a simplified alternative to the weighted distribution

approach where each observed location is matched with a

conditional availability set, limited to some predefined spatial

and/or temporal range (Arthur et al. 1996; McCracken,

Manly & Heyden 1998; Compton, Rhymer & McCollough

2002; Boyce et al. 2003; Baasch et al. 2010). A major

strength of this approach is that maximum-likelihood esti-

mates (MLEs) of the parameters can be efficiently obtained

though commonly used statistical software (often relying on

a Cox Proportional Hazard routine; e.g. function clogit in

R). One particular type of such conditional RSA is step

selection analysis (SSA), where each ‘used step’ (connecting

two consecutive observed positions of the animal) is coupled

with a set of ‘available steps’ randomly sampled from the

empirical distribution of observed steps or their characteris-

tics (e.g. their length and direction; Fortin et al. 2005; Duch-

esne, Fortin & Courbin 2010; Thurfjell, Ciuti & Boyce

2014).

The definition of availability is challenging, however, even

when using the SSA approach. The problem arises due to the

sequential, rather than simultaneous, estimation of the move-

ment and habitat-selection components of the process. Owing

to this stepwise procedure, the resulting habitat-selection

inference is conditional (on movement), whereas movement is

assumed independent of habitat selection. In reality, the two

are tightly linked, with habitat selection and availability

affecting the animal’s movement patterns (Avgar et al.

2013b), and the animal’s movement capacity affecting its

habitat-use patterns (Rhodes et al. 2005; Avgar et al. 2015).

Failure to adequately account for the movement process may

consequently lead to biased habitat-selection estimates (Fores-

ter, Im & Rathouz 2009).

As we will show here, the benefits of adequately

accounting for the movement process may extend beyond

obtaining unbiased habitat-selection estimates. SSAs rely

on a simple depiction of animal movement as a series of

stochastic discrete steps, characterised by specific velocity

and autocorrelation distributions. This same depiction

underlies the mathematical modelling of animal movement

as a discrete-time random walk (RW), including correlated

and/or biased RW (Kareiva & Shigesada 1983; Turchin

1998; Codling, Plank & Benhamou 2008). Indeed, many

SSA formulations correspond to a correlated RW process

with local bias produced by resource selection (BCRW;

Duchesne, Fortin & Rivest 2015). Apart from their com-

patibility with the way we often observe animal movement

(i.e. in continuous space and at discrete times), many RW

can be well approximated by diffusion equations, allowing

a much sought shift from an individual-based Lagrangian

perspective to population-level Eulerian models (Turchin

1991, 1998). SSAs are thus at an interface between statisti-

cal (phenomenological) RSAs and mathematical (mechanis-

tic) RW models (Potts, Mokross & Lewis 2014b; Potts

et al. 2014a), models that form the backbone of much of

the existing body of theory in the field of animal move-

ment (Codling, Plank & Benhamou 2008; Benhamou 2014;

Fagan & Calabrese 2014).

In this paper, we outline a CLR-based approach for

simultaneous estimation of the movement and habitat-selec-

tion components, an approach we name integrated step selec-

tion analysis (iSSA; Fig. 1). The iSSA allows the effects of

environmental variables on the movement and selection pro-

cesses to be distinguished, thus providing a valuable tool for

testing hypotheses (e.g. to test whether animals travel faster

in certain times or through certain habitats), while resulting

in an empirically parameterised mechanistic movement

model (i.e. a mechanistic step selection model; Potts et al.

2014a), that can be used to translate individual-level observa-

tions to population-level utilisation distributions across space

and time (Potts et al. 2014a; Potts, Mokross & Lewis 2014b;

Appendix S1).

The iSSA is related to several recently published works

integrating animal movement and resource selection. Both

Forester, Im & Rathouz (2009) and Warton & Aarts

(2013) demonstrated the inclusion of movement variables

in an RSA and its marked effect on the resulting inference.

Johnson, Hooten & Kuhn (2013) have shown that animal

telemetry data can be viewed as a realisation of a non-

homogenous space–time point process, and MLEs of this

process can be obtained using a generalised linear model.

These contributions focused on gaining unbiased resource

selection inference while treating the movement process as

nuisance that must be ‘controlled for’. Here, we seek expli-

cit inference of this process. State-space models of animal

movement (reviewed by Jonsen, Myers & Flemming 2003;

and Patterson et al. 2008) predict the future state (e.g. spa-

tial position) of the animal given its current state (where

an ‘observation model’ provides the probability of observ-

ing these states), environmental covariates, and an explicit

‘process model’. Once parametrised, the process model can

be used to generate space-use prediction, but parametrisa-

tion is often technically demanding and computationally

intensive (Patterson et al. 2008). More recently, Potts et al.

(2014a) demonstrated the use of a ‘mechanistic step selec-

tion model’ to infer both the drivers and the steady-state

distribution of animal space-use, but the model was framed

around one specific functional form of the movement ker-

nel, and parameter estimates were obtained using a cus-

tom-made likelihood maximisation procedure. Lastly,

Duchesne, Fortin & Rivest (2015) demonstrated that an

SSA can be used to obtain unbiased estimates of the direc-

tional persistence and bias of a BCRW, but did not

address parametrisation of the step-length distribution.

The iSSA builds and expands on these contributions. We

will demonstrate that, by statistically accounting for an explicit
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movement process within an SSA, a complete habitat-depen-

dent mechanistic movement model can be parametrised from

telemetry data using a standard CLR routine. In the following,

we provide a detailed description of the approach and evaluate

its performance (compared with standard RSA and SSA) in

correctly inferring the movement and habitat-selection

processes underlying observed space-use patterns, and in pre-

dicting the resultingUD.

Materials andmethods

INTEGRATED STEP SELECTION ANALYSIS

In their work on the subject of accounting for movement in resource-

selection analysis, Forester, Im & Rathouz (2009) demonstrated that

including a distance function in SSA substantially reduces the bias in

habitat-selection estimates. Mathematically, their argument is based

Fig. 1. Step selection analysis workflow. Light grey shading indicates conventional SSA whereas dark grey shading indicates the integrated

approach advocated here (iSSA). SeeAppendix S4 for detailed iSSA guidelines and tips.
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on the habitat-independent movement kernel (the function governing

movement in the absence of resource selection, or across a homoge-

neous landscape; Hjermann 2000; Rhodes et al. 2005) belonging to

the exponential family, so that it can be accounted for with the logistic

formulation of the SSA likelihood function. Here we shall make the

assumption that, in the absence of habitat selection, step lengths fol-

low either an exponential, half-normal, gamma or log-normal distri-

bution. Under this assumption, the statistical coefficients associated

with step length, its square, its natural logarithm and/or the square of

its natural logarithm (depending on the assumed distribution), when

incorporated as covariates in a standard SSA, serve as statistical esti-

mators of the parameters of the assumed step-length distribution (see

Appendices S2 and S3 for details, and below for an example). Stan-

dard model selection (e.g. likelihood ratio or AIC) then can be used to

select the best-fit theoretical distribution (out of the four listed above).

The iSSA approachmoreover can be applied to infer directional per-

sistence and external bias. Assuming that the angular deviations from

preferred directions (either the previous heading, the target heading or

both) are vonMises distributed (an analogue of the normal distribution

on the circle), the cosine of these angular deviations can be included as

covariates in an SSA to obtain MLEs of the corresponding von Mises

concentration parameters (Duchesne, Fortin & Rivest 2015). Hence,

MLEs of iSSA coefficients affiliated with directional deviations and

step lengths are directly interpretable as the parameters of distributions

governing the underlying BCRW.

We shall make the assumption here that animal space-use beha-

viour is adequately captured by a separable model, involving the pro-

duct of two kernels, a movement kernel and a habitat-selection kernel.

Formally, we define a discrete-time movement kernel, Φ, which is pro-

portional to the probability density of occurrence in any spatial posi-

tion, x, at time t, in the absence of habitat selection. The determinants

of Φ are as follows: the Euclidian distances between x and the preced-

ing position, xt�1 (the step length; lt = ||x – xt�1||), the distances

between xt�1 and xt�2 (the previous step length; lt�1 = ||xt�1 – xt�2||),

the associated step headings, at and at�1 (the directions of movement

from xt�1 to x and from xt�2 to xt�1, respectively), and a vector of

spatial and/or temporal movement predictors at time t and/or at the

vicinity of x and/or xt�1, Y(x,xt�1,t) (e.g. terrain ruggedness, migra-

tory phase, snow depth, etc.). The effects of these step attributes on Φ
are controlled by the associated coefficients vector, h. Note that the

effects of spatial attributes here are assumed to operate through local

biomechanical interactions between the animal and its immediate

environment, interactions that determine the rate of displacement (i.e.

kinesis), not where the animal ‘wants’ to be (i.e. taxis). Also note that

the kernel Φ can be non-Markovian and accommodate various types

of velocity autocorrelations (lack of independence between directions

and/or lengths of consecutive steps), including correlated and biased

random walks (if directional biases are known a priori).

We further define the habitat-selection function,Ψ, which is propor-

tional to the probability density of observing the animal in any spatial

position, x, at time t, in the absence of movement constraints. The

determinants of Ψ are the habitat attributes in x at t, H(x,t), and their

corresponding selection coefficients, x. The normalised product of Φ
andΨ yields the probability density of occurrence in x at t, which is:

f xtjxt�1;xt�2ð Þ ¼ U lt; lt�1;at;at�1;Yðx;xt�1; tÞ;h½ � �W H x; tð Þ;x½ �Ð
XU lt; lt�1;at;at�1;Yðx;xt�1; tÞ;h½ � �W H x; tð Þ;x½ �dx :

eqn 1

Note that the same environmental variable (e.g. snow depth or ter-

rain ruggedness) might be included in both Y and H and hence affect

bothΦ [e.g. decreased speed in deep snow or across rugged terrain) and

Ψ (e.g. selection for snow-free or flat localities). Eqn 1 is equivalent to

the formulation used (for example) by Rhodes et al. (2005, Eqn 1],

Forester, Im & Rathouz (2009) and Johnson, Hooten & Kuhn (2013,

Eqn 1) and is a generalised form of a redistribution kernel – a widely

used mechanistic model of animal movement and habitat selection (see

Discussion for recent examples).

The denominator in Eqn 1 is an integral over the entire spatial

domain, Ω, serving as a normalisation factor to ensure the resulting

probability density integrates to one. Whereas in most cases it would

be impossible to solve this integral analytically, various forms of

numerical (discrete-space) approximations can be used to fit redistri-

bution kernel functions, such as Eqn 1, to data (see Avgar, Deardon

& Fryxell 2013a and the Discussion). Here we focus on a simple like-

lihood-based alternative to such numerical methods, one that can be

implemented using common statistical software and is hence accessi-

ble to most ecologists. Assuming an exponential form for both Φ
and Ψ, MLEs for the parameter vectors h and x can be obtained

using conditional logistic regression, where observed positions (cases)

are matched with a sample of available positions (controls; Fig. 1

and Appendices S2–S4).

A HYPOTHETICAL EXAMPLE

Let us assume we have obtained a set of T spatial positions, sampled at

a unit temporal interval along an animal’s path, and that we also have

maps of two (temporally stationary) spatial covariates, h(x) and y(x).

We shall now assess the statistical support for the following proposi-

tions (examples of the sort of hypotheses that could be tested):

A The animal is selecting high values of h(x).

B At the observed temporal scale, and in the absence of variability in h

(x), the animal’s movement is directionally persistent (i.e. consecu-

tive headings are positively correlated), and the degree of this persis-

tence varies with y(x) (e.g. the animal moves more directionally

where y(x) is lower). The resulting turn angles are von Mises dis-

tributed with mean 0 (i.e. left and right turns are equally likely) and

a y-dependent concentration parameter.

C At the observed temporal scale, and in the absence of variability in h

(x) and y(x), the animal’s movement is characterised by gamma dis-

tributed step lengths, and the shape of this step-length distribution

depends on the time of day (e.g. the animal moves faster during day-

time).

Note that these propositions are contingent on the temporal gap

between observed relocations (i.e. step duration), as well as on the spa-

tial resolution of our covariate maps, h(x) and y(x). We thus explicitly

acknowledge that our inference is scale dependent.

We start by sampling, for each (but the first two) of the observed

points along a path (xt, t = 3, 4, . . ., T), a set of s control points (avail-

able spatial positions at time t; x0t;i, i = 1, 2, . . ., s), where the probability

of obtaining a sample at some distance, l0t;i, from the previous observed

point (l0t;i ¼ kx0t;i � xt�1k) is given by the gammaPDF:

g l0t;ijb1; b2
� �

¼ 1

Cðb1Þ�b2b1
�l0t;ib1�1�e�

l0
t;i
b2 eqn 2

Here, b1 and b2 are initial estimates of the gamma shape and scale

parameters (respectively) obtained based on the observed step-length

distribution (using either the method of moments or maximum likeli-

hood). As noted earlier, this estimation is confounded by the process of

habitat selection, and hence, a method to unravel movement inference

from habitat selection is needed. The iSSA will provide estimates of the

deviations of these initial values from the unobserved habitat-indepen-
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dent shape and scale (Appendices S2–S3). Note that these control sets

also could be sampled randomly within some finite spatial domain (e.g.

within the maximal observed displacement distance; Appendices S2

and S4). Distance weighted sampling is expected to increase inferential

efficiency, resulting in a smaller standard error for a given s value, but is

not a necessity (Forester, Im&Rathouz 2009). In general, any increase

in T and/or s will result in better approximation of the used and/or

availability distributions (respectively), and hence better inference

(together with larger computational costs).

Once sampled, control (available) points, x0t;i, are assigned a value of

0, whereas the observed (used or case) points, xt, are assigned a value of

1. The resulting binomial response variable can now be statistically

modelled using conditional (case–control) logistic regression, as the

likelihood of the observed data is exactly proportional to (Gail, Lubin

&Rubinstein 1981; Forester, Im&Rathouz 2009; Duchesne, Fortin &

Rivest 2015):

where a0t;i is the direction of movement from xt�1 to x0t;i, and Dt is an

indicator variable having the value 1 when t is daytime and 0 otherwise.

Note that the summation in the denominator starts at s = 0 (rather

than 1) to indicate that the used step is included in the availability set

(x0t;i¼0 ¼ xt). Also note that it is the inclusion of turn angles that neces-

sitates the exclusion of the first two positions (xt = 1 and xt = 2); if no

velocity autocorrelation is modelled, only the first position is excluded.

Lastly, note that this formulation implies that the degree of directional

persistence is affected by the value of y at the onset of the step only; in

the next section, we provide an example of modelling habitat effects on

movement along the step.

Equation 3 is a discrete-choice approximation of Eqn 1 (specifi-

cally tailored according to propositions A–C), and we provide its

full derivation in Appendix S3. In summary, b3 is the habitat-selec-

tion coefficient (corresponding to proposition A and estimating the

only component of the parameter vector x in Eqn 1), b4 and b5
are the basal (habitat-independent) and y-dependent directional

persistence coefficients (corresponding to proposition B and esti-

mating two components of the parameter vector h in Eqn 1), and

b6, b7 and b8 are the modifiers of the step-length shape and scale

coefficients (corresponding to proposition C and estimating the

remaining components of the parameter vector h). Once maxi-

mum-likelihood estimates are obtained, the shape and scale param-

eters of the basal step-length distribution can be calculated

(Appendix S3), where the shape is given by: [(b1 + b7) + b8.Dt],

and the scale is given by: [1/(b2
�1–b6)]. Similarly, b4 can be shown

to be an unbiased estimator of the concentration parameter of the

(habitat-independent) von Mises turn angles distribution (Duch-

esne, Fortin & Rivest 2015).

Including movement attributes as covariates in SSA, which we

termed here iSSA, thus allows simple likelihood-based estimation of

explicit ecological hypotheses within a framework of a mechanistic

habitat-mediated movement model. Such hypotheses might include,

in addition to those mentioned thus far, long- and short-term target

prioritisation (Duchesne, Fortin & Rivest 2015), barrier crossing

and avoidance behaviour (Beyer et al. 2015), and interactions with

conspecifics and intraspecifics (Latombe, Fortin & Parrott 2014;

Potts, Mokross & Lewis 2014b; Potts et al. 2014a). In fact, many of

the facets of the generic approach developed by Langrock et al.

(2012) can be included in an iSSA with the MLEs obtained using

standard statistical packages. An iSSA thus holds promise as a

user-friendly yet versatile approach in the movement ecologist’s

toolbox. In Appendix S4, we provide practical guidelines for the

application of iSSA. In the next sections, we explore the utility of

this approach using computer simulations.

SIMULATIONS

Testing the inferential and predictive capacities of any statistical

space-usemodel is challenging because we are often ignorant of the true

process giving rise to the observed patterns, as well as of the true distri-

bution of space-use from which these patterns are sampled (Avgar,

Deardon & Fryxell 2013a; Van Moorter et al. 2013). To deal with this

challenge, we employ here a simple process-based movement

simulation framework. We provide full details of the simulation

procedure and its statistical analysis inAppendix S5.

Fine-scale space-use dynamics were simulated using stochastic

‘stepping-stone’ movement across a hexagonal grid of cells. Each

cell, x, is characterised by habitat quality, h(x) with spatial autocor-

relation set by an autocorrelation range parameter, q (=0, 1, 5, 10

and 50). For each q value, 1000 trajectories were simulated and

then rarefied (by retaining every 100th position). Each of these rar-

efied trajectories was then separately analysed using RSA and 10

different (i)SSA formulations, including one or more of the follow-

ing covariates (Table 1): habitat values at the end of each step, h

(xt), the average habitat value along each step, h(xt�1,xt), the step

length, lt (=||xt�1 – xt||), its natural-log transformation, ln(lt), and

the statistical interactions between lt, ln(lt) and h(xt�1,xt). Models

that included only h(xt) and/or h(xt�1,xt) correspond to traditionally

used SSA (relying on empirical movement distributions with no

movement attribute included as covariates; models a, b and c in

Table 1), whereas models that additionally included lt and ln(lt) cor-

respond to iSSA. The predictive capacity of the models was esti-

mated based on the agreement between their predicted utilisation

distributions (UD) and the ‘true’ UD, generated by the true under-

lying movement process. We refer the reader to Appendix S5 for

further details.

A separate simulation study was conducted to evaluate the identifia-

bility and estimability of the iSSAparameters as function of sample size

and habitat-selection strength (Appendix S6).

Results

PARAMETERISATION

All models converged in a timely manner and the convergence

time for the most complex model (model j in Table 1) was

approximately 1 CPU sec. Of the 10 (i)SSA formulations speci-

fied in Table 1, AIC ranking indicated support for only four

(d, f, h and j), all of which include the habitat value at the step’s

endpoint (with coefficient b3) and the step length and its natu-

ral logarithm (with coefficients b5 and b6) as covariates. Hence,

YT
t¼3

exp½b3�hðxtÞ þ ½b4 þ b5�yðxt�1Þ� � cosðat�1 � atÞ þ b6�lt þ ðb7 þ b8�DtÞ� lnðltÞ�Ps
i¼0 exp½b3�hðx0t;iÞ þ ½b4 þ b5�yðxt�1Þ��cosðat�1 � a0t;iÞ þ b6�l0t;i þ ðb7 þ b8�DtÞ� lnðl0t;iÞ�

; eqn 3
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iSSAs better explain our simulated data than traditionally used

SSAs (excluding step length as a covariate), but only as long as

an endpoint effect (i.e. selection for/against the habitat value at

the end of the step) is included. In fact, models that excluded

the habitat value at the step’s endpoint (models b, e, g and i)

had AIC scores that were typically two orders of magnitude

larger than those including it. In comparison to RSA, iSSA

formulations had unequivocal AIC support at low habitat spa-

tial autocorrelation levels, but only partial support at high

autocorrelation levels (Table 1).

Estimated habitat-selection strengths, as indicated by our

RSA and SSA coefficient estimates (bRSA and b3, respectively),
were appreciably larger than the true habitat-selection strength

(x = 1), andmore so for RSA estimates than for SSA (Fig. 2).

Note that this in itself does not mean these estimates are ‘bi-

ased’ but rather reflects the inherent difference between the

intensity of the true process and that of the emerging pattern,

at the scale of observation (see further discussion below). These

estimates showed little sensitivity to the level of habitat spatial

autocorrelation, although a substantial increase in variance is

observed in the RSA case (Fig. 2a). As found before by Fores-

ter, Im&Rathouz (2009), the strength of SSA-inferred habitat

selection is larger when step lengths are included as a covariate

in the analysis (iSSA), but this effect is fairly weak and dimin-

ishes as the habitat’s spatial autocorrelation increases

(Fig. 2b).

Overall, SSA-inferred habitat selections were substantially

less variable than RSA-based estimates and showed little sensi-

tivity to the inclusion or exclusion of other covariates in the

model fit (Fig. 2). This is not the case, however, for the effect

of themean habitat value along the step (b4), which varied sub-
stantially with both the level of habitat spatial autocorrelation

and the inclusion of an endpoint effect (b3). Where b3 was not
included in the model fit (models b, e and i in Table 1), b4
increased with q, whereas where b3 was included (models c, f

and j), b4 was closer to zero (Fig. 3). Interestingly, when only

the habitat at the end of the step and the habitat along the step

were included in the model (i.e. model c; a commonly used

SSA formulation), and at low q values (=0, 1), b4 was negative,
indicating ‘selection against’ high-quality steps. In fact, this

reflects the low probability of observing a ‘used’ step that tra-

verses high-quality habitat but does not end there.

As explained above (and in Appendices S2 and S3), iSSA

coefficients affiliated with the step length (b5) and its natural

logarithm (b6), when combined with the estimated shape and

scale values of the observed step-length distribution (b1 and b2;
on which sampling was conditioned; Appendices S3 and S5),

could be used to infer the shape and scale of the ‘habitat-inde-

pendent’ step-length distribution [i.e. assuming h(xt,xt+1) = 0].

Under most imaginable scenarios, we would expect this basal

movement kernel to be wider (i.e. with larger mean) than the

observed one, as animals tend to linger in preferred habitats

and hence display more restricted movements compared to the

basal expectation. Indeed, the mean of these inferred distribu-

tions (the product of their shape and scale: ðb1þb6Þ
ðb�1

2 �b5Þ
) corre-

sponds exactly to the observed mean, as long as no other

covariates are included in the analysis (model x in Fig. 4).

Once other covariates are included in the model (and hence

habitat selection is at least partially accounted for), inferred

mean step-length values were significantly higher from the

observed values, showed little sensitivity to model structure,

but increased with q (as do the observed mean step lengths).

One exception is model g, which strongly underestimated the

mean step length at moderate-high q values as it does not

include anymain habitat effects.

Even at high q values, inferred mean step length slightly but

consistently underestimates the true habitat-independent step-

length distribution (calculated by simulating the process based

on Eqn S5�1 with x = 0; Fig. 4). This bias is a result of an

iSSA’s limited capacity to account for the full movement

Table 1. The 11 different models fitted here and their relative performance ranking at five different levels of habitat spatial autocorrelation (with

1000 realisations at each level). To enable AIC comparison, RSA’s were run with only those positions included in the SSA (i.e. excluding the first

position)

Model

Covariates %Scord as best (based onAIC)

R (xt) R (xt,xt�1) lt ln (lt)

R (xt,xt�1)

lt

R (xt,xt�1)

ln (lt) q = 0 q = 1 q = 5 q = 10 q = 50

RSA bRSA 0 0 0 0 0 0 0 20�3 45�7 44�7
SSA

a b3 0 0 0 0 0 0 0 0 0 0

b 0 b4 0 0 0 0 0 0 0 0 0

c b3 b4 0 0 0 0 0 0 0 0 0

iSSA

d b3 0 b5 b6 0 0 0 0 0 1�1 1�1
e 0 b4 b5 b6 0 0 0 0 0 0 0

f b3 b4 b5 b6 0 0 10�4 4�4 13�9 24�0 28�4
g 0 0 b5 b6 b7 b8 0 0 0 0 0

h b3 0 b5 b6 b7 b8 66�2 28�3 10�7 5 2�3
i 0 b4 b5 b6 b7 b8 0 0 0 0 0

j b3 b4 b5 b6 b7 b8 23�4 67�3 55�1 23�3 23�5

Bolded numbersmark the best performingmodel at each level of spatial autocorrelation.
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process as it unfolds in between observations. The animal does

not actually travel along the straight lines that we term ‘steps’

and, even if it would, the mean habitat value along the step

does not exactly correspond to its probability to travel farther.

As long as the scale of the observation is coarser than the scale

of the underlying movement process, the animal’s true move-

ment capacity is never fully manifested in the observed reloca-

tion pattern and is thus always underestimated. Note,

however, that this bias is negligibly small where the spatial

autocorrelation of habitats is high (q > 1; Fig. 4).

(a)

(b)

Fig. 2. Statistically inferred habitat-selection coefficient estimates for RSA (a) and SSA (b; letters along the x-axis refer to the SSA formulations

listed in Table 1), for five levels of habitat spatial autocorrelation, q. Each box-and-whiskers is based on 1000 independent estimates, where the cen-

tral mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered

outliers (i.e. within approximately 99% coverage if the data are normally distributed), and outliers are plotted individually. Horizontal dashed lines

represent the true habitat-selection intensity,x = 1. SeeAppendix S5 for further details.

Fig. 3. Statistically inferred effects of themean habitat along the step. The dashed line represents no effect. Other details are as in Fig 2.
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Finally, despite apparent support for iSSA formulations

including interaction between the step length and habitat qual-

ity along the step (Table 1; models h and j), the estimated val-

ues of the interaction coefficients, b7 and b8, mostly overlapped

zero (Appendix S7). Generally speaking, the mean habitat

value along the step has a weak negative effect on both the

shape (through b8) and the scale (through its inverse relation-

ship with b7) of the step-length distribution – long steps are less
likely through high-quality habitats.

PREDICTIVE CAPACIT IES

At approximate steady state, RSA-based UD predictions are

slightly more accurate and precise than SSA-based predictions

(Fig. 5 and Appendix Table S8). The RSA’s predictive capac-

ity increases with q (while its precision dramatically decreases),

whereas the opposite is true for SSA predictions, where the

minimum KLD value (Kullback-Leibler Divergence; see

Appendix S5) is reached when q = 0 (Appendix Table S8).

KLD values coarsely mirror the AIC ranking of the different

SSA formulations in distinguishing those that include an end-

point effect (b3), but the best performing formulations based

on KLD are simpler than the ones selected based on AIC

(Tables 1 and S8). That said, all iSSA formulations including

an endpoint effect performed well overall, with GKLD scores (a

measure of goodness of fit; Appendix S5) ranging from ~0�84
(model fwhen q = 50) to ~0�98 (model dwhen q = 0). For ref-

erence, the GKLD scores for RSA-based predictions ranged

from ~0�98 (q = 0) to ~0�99 (q = 50).

To test the sensitivity of the models’ predictions to the

sampling scale (see Appendix S9 for relating q to the sam-

pling scale), we generated predicted UDs, both SSA-based

and RSA-based, across a highly autocorrelated landscape

(q = 50) using parameter estimates obtained from samples of

a random landscape (q = 0), and vice versa. RSA-based

predictions were robust to these scale mismatches, with GKLD

scores of ~0�98 and ~0�96, for the q = 50 landscape (with

parameter estimates based on q = 0 data) and the q = 0

landscape (with parameter estimates based on q = 50 data),

respectively. Similarly, all step selection models including an

endpoint effect performed well, with GKLD scores ranging

from ~0�94 (model f) to ~0�98 (model h) for the q = 0 land-

scape (with parameter estimates based on q = 50 data), and

GKLD scores ranging from ~0�83 (model j) to ~0�97 (model a)

for the q = 50 landscape (with parameter estimates based on

q = 0 data). Overall, iSSA-based predictive capacity

remained mostly unaltered by mismatches between the data’s

landscape structure and the structure of the landscape on

which projections are made.

As can be expected, step selection models predict transient

UDs better than the inherently stationary RSA (except when

q = 50; Appendix Table S8). In comparison with steady-state

predictions, complex iSSA-based predictions perform better

than simpler ones (Appendix Table S8). As for the steady-state

predictions, all iSSA formulations including an endpoint effect

performed well in predicting transient UDs, with GKLD scores

ranging from ~89% (model h when q = 0) to ~0�98 (model d

when q = 1). GKLD scores for RSA-based predictions showed

substantial sensitivity to the level of spatial autocorrelation,

ranging from ~0�69 (q = 0) to ~0�97 (q = 50).

ISSA IDENTIF IABIL ITY AND ESTIMABIL ITY

Results are presented in detail in Appendix S6. In short, our

analysis revealed that, under the test scenario, all iSSA

parameters are fully identifiable, that estimates are unbiased

in relation to the true values of the kernel generating func-

tions, and that an increase in sample size beyond ~400
observed positions does not seem to substantially enhance

precision (and hence estimability). That said, our results also

Fig. 4. Mean of gamma step-length distributions (displacement in spatial units per Dt; Appendix S5) inferred based on the different iSSA formula-

tions (see Table 1). Model x is a null model, including only the step length and its natural logarithm (with no habitat effects), added here to demon-

strate that the conditional logistic regression produces unbiasedMLEs. The dotted lines correspond to the observedmean step length across all 1000

realisations at each of the five levels of habitat spatial autocorrelation. The dashed line corresponds to the ‘true’ habitat-free mean step length, calcu-

lated by simulating the process using Eqn S5.1 but withx = 0. Other details are as in Fig 2.
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indicate that inferential accuracy of movement related param-

eters may be highly variable, leading to compromised preci-

sion (with up to 1000% departure from the true value;

Appendix S6) even at a fairly large sample size. This may be

particularly true given the inherent trade-off between sam-

pling extent and frequency (Fieberg 2007). Estimability of cer-

tain parameters, under certain scenarios, may thus be weak

and must be evaluated on a case-by-case basis.

Discussion

The ideas, simulations and results presented above are aimed

at providing a comprehensive assessment of using integrated

step selection analysis, iSSA, with emphasis on its predictive

capacity. The iSSA allows simultaneous inference of habitat-

dependent movement and habitat selection and is hence a

powerful tool for both evaluating ecological hypotheses and

predicting ecological patterns. We have shown that iSSA-

based habitat-selection inference is relatively insensitive to

model structure and landscape configuration, and that iSSA-

based UD predictions perform well across different temporal

and spatial scales (we discuss the connection between the

temporal resolution of the data and the habitat spatial auto-

correlation in Appendix S9). On the other hand, our results

indicate that movement and habitat selection may not be com-

pletely separable once observations are collected at a coarser

temporal resolution than the underlying behavioural process.

Consequently, stationary RSA-based predictions, whereas

much simpler to obtain, provide slight but consistent better fit

to the true UD when the time-scale is long (and hence

approaches the steady-state limit).

Two caveats are in place here. First, in our analysis the defi-

nition of the availability set for the RSA was exact (i.e. the

entire domain), a situation that seldom occurs in empirical

studies where availability is unknown. This is not the case for

iSSA where the availability set always can be adequately

defined (but is conditional on the temporal resolution of the

positional data). Secondly, the high variability characterising

the RSA coefficient estimates, and its resulting predictions

(Figs 2 and 5) indicate substantial risk of erroneous inference.

This may be particularly true when sample size is smaller than

the relatively large sample used here, resulting in data that are

not adequate unbiased samples of the steady-state UD, which

is likely the case inmost empirical studies. Themore mechanis-

tic nature of the iSSAmakes it less sensitive to stochastic differ-

ences between specific realisations of the space-use process

(e.g. due to differences in landscape configuration) and thus

leads to more precise inference. Hence, even if the sole objec-

tive of a given study is to predict the long-term (steady-state)

utilisation distribution, the more complicated iSSA-based pre-

dictions might be more reliable than those based on RSA.

Moreover, in many real-world ecological scenarios, a steady

state is never reached, and consequently, the static RSA-based

approach is less appropriate than the dynamical iSSA.We thus

conclude that iSSA should be the method of choice whenever:

(i) RSA availability cannot be properly defined, (ii) predicting

across a landscape different from the landscape used for

parametrisation, (iii) the data used for parametrisation are not

Fig. 5. Log–log plots of the true UDs vs the

predictedUDs. Each dot represents the utilisa-

tion probability of a single spatial cell. Black

dots correspond to the median parameter esti-

mates, whereas grey dots correspond to the 2�5
and 97�5 percentiles of the estimated parame-

ters distribution. Black diagonal lines repre-

sent a perfect 1:1 mapping – dots appearing

above these lines are spatial cells where the

true UD value exceeded the predicted UD

value (under-predictions), whereas dots

appearing below these lines represent over-

predictions. Note that iSSA results are pre-

sented for the simplest iSSA including an end-

point effect, formulation d in Table 1.
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an adequate sample of the true steady-state UD or (iv) predict-

ing transient space-use dynamics.

Many movement and selection processes could be consid-

ered plausible, and the particular details of the mechanistic

model used to simulate space-use datamight substantially alter

our conclusions. Our aim here was to use the simplest, and

hence most general, mechanistic process imaginable, leading

us to choose a stepping-stone movement process as our pat-

tern-generating process. Interestingly, this simple process, gov-

erned by only two parameters (Eqn S5.1), gave rise to complex

patterns once rarefied. In particular, the emerging step-length

distributions fit remarkably well with a gamma distribution,

with shape and scale that reflect the underlying landscape

structure. Note that this is a purely phenomenological descrip-

tion of the movement kernel, as the true underlying process

had a fixed, habitat-independent movement parameter

(Appendix S5). Ideally, a truly mechanistic approach will

involve maximising the likelihood over all possible paths the

animal might have taken between two observed locations, and

hence allowing inference of the true underlying process (Mat-

thiopoulos 2003). In most cases, however, this approach is for-

biddingly computationally expensive. We showed that the

approximation based on samples of straight-line movements

between observed positions, which is the underlying assump-

tion of any SSA, performs well over a range of conditions. An

iSSA thus provides a reasonable compromise between compu-

tationally intensive mechanistic models and the purely phe-

nomenological RSA.

According to Barnett & Moorcroft (2008), the steady-state

UD should scale linearly with the underlying habitat-selection

function Ψ (Eqn 1) when informed movement capacity

exceeds the scale of spatial variation inΨ, but should scale with
the square ofΨ if informedmovement capacity is much shorter

than the scale of habitat variation. In the particular case of the

exponential habitat-selection function used here (Eqn S5.1),

we would thus expect the following loglinear relationship: ln

[UD(x)] = a + b∙x∙h(x), where a is a scaling parameter [the

utilisation probability where h(x) = 0], and b (1 ≤ b ≤ 2) is

some increasing function of the habitat spatial autocorrelation,

q. Our results, emerging from a very different model than the

continuous-space continuous-time analytical approximation

of Barnett & Moorcroft (2008), corroborate this expectation.

The slope of the loglinear regression model described above

increases from b � 1�4 to b � 2 as q increases from 0 to 50

(Appendix S10). RSA-based coefficient estimates, bRSA, clo-
sely mirror this pattern, increasing from ~1�6 to ~2 as q
increases (Fig. 2a). Hence, as can be expected from a phe-

nomenological model, RSA-based inference reflects the

steady-state UD rather than the underlying habitat-selection

process.

Recent years have seen a proliferation of sophisticated

modelling approaches aimed at mechanistically capturing

animal space-use behaviours. Many of these models share

the theoretical underpinning of iSSA (as formulated in

Eqn 1), relying on a depiction of animal space-use as

emerging from the product of a resource-selection process

and a selection-independent movement kernel (e.g. Rhodes

et al. 2005; Getz & Saltz 2008; Avgar, Deardon & Fryxell

2013a; Potts et al. 2014a; Beyer et al. 2015). Unlike the

iSSA, however, fitting these kernel-based models to empiri-

cal data relies on complex, and often specifically tailored

likelihood maximisation algorithms (namely discrete-space

approximations of the integral in Eqn 1). The statistical

machinery used in iSSA, based on obtaining a small set of

random samples from an inclusive availability domain, is

accessible to most ecologists because it relies on software

that is already used (Thurfjell, Ciuti & Boyce 2014).

Through the addition of appropriate covariates and interac-

tion terms, iSSA can moreover address many of the ques-

tions that were the focus of other kernel-based approaches,

such as home-range behaviour (Rhodes et al. 2005), mem-

ory-use (Avgar, Deardon & Fryxell 2013a; Merkle, Fortin

& Morales 2014; Avgar et al. 2015; Schl€agel & Lewis 2015),

habitat-dependent habitat selection (Potts et al. 2014a) and

barrier effects (Beyer et al. 2015). Hence, iSSA allows ecolo-

gists to tackle complicated questions using simple tools.

To conclude, our work complements several recent contri-

butions advocating the use of movement covariates within step

selection analysis (Forester, Im & Rathouz 2009; Johnson,

Hooten & Kuhn 2013; Warton & Aarts 2013; Duchesne, For-

tin &Rivest 2015).We believe a convincing body of theoretical

evidence now indicates the suitability of integrated step selec-

tion analysis as a general, flexible and user-friendly approach

for both evaluating ecological hypotheses and predicting

future ecological patterns. Our work highlights the importance

of including endpoint effects in the analysis together with some

caveats regarding the interpretation of SSA results, specifically

when dealing with the effects of the habitat along the step. We

also recommend careful consideration of parameter estimabil-

ity, particularly with regard to the movement components of

the model, whichmay be prone to strong cross-correlations (as

discussed in Appendix S6). Based on our current experience in

applying iSSA to empirical data (T. Avgar, work in progress)

we have provided practical guidelines in Appendix S4. Addi-

tional theoretical work is needed to investigate the effects of

the underlying movement process on iSSA performance, as

well as to come up with computationally efficient iSSA-based

simulations to enable rapid generation of predicted utilisation

distribution (as discussed in Appendix S1). Most importantly,

the utility of iSSAmust now be evaluated by applying it to real

data sets, and using it to solve real ecological problems.

Acknowledgements

TA gratefully acknowledges supported by the Killam and Banting Postdoctoral

Fellowships. MAL gratefully acknowledges NSERC Discovery and Accelerator

Grants and a Canada Research Chair. MSB thanks NSERC and the Alberta

Conservation Association for funding. The authors thank L. Broitman for

designing Fig. 1 and C. Prokopenko for helpful editorial comments, and Dr.

Geert Aarts, Dr. John Fieberg and an anonymous reviewer, for their instructive

comments and suggestions.

Data accessibility

All data used in this paper were simulated as described in the online Supporting

Information.

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 7, 619–630

628 T. Avgar et al.



References

Arthur, S.M., Manly, B.F.J., Mcdonald, L.L. & Garner, G.W. (1996) Assessing

habitat selectionwhen availability changes.Ecology, 77, 215–227.
Avgar, T., Deardon, R. & Fryxell, J.M. (2013a) An empirically parameterized

individual basedmodel of animal movement, perception andmemory.Ecolog-

icalModelling, 251, 158–172.
Avgar, T., Mosser, A., Brown, G.S. & Fryxell, J.M. (2013b) Environmental and

individual drivers of animal movement patterns across a wide geographical

gradient. Journal of Animal Ecology, 82, 96–106.
Avgar, T., Baker, J.A., Brown, G.S., Hagens, J., Kittle, A.M.,Mallon, E.E. et al.

(2015) Space-use behaviour of woodland caribou based on a cognitive move-

mentmodel. Journal of Animal Ecology, 84, 1059–1070.
Baasch, D.M., Tyre, A.J., Millspaugh, J.J., Hygnstrom, S.E. & Vercauteren,

K.C. (2010) An evaluation of three statistical methods used to model resource

selection.EcologicalModelling, 221, 565–574.
Barnett, A.H. &Moorcroft, P.R. (2008) Analytic steady-state space use patterns

and rapid computations inmechanistic home range analysis. Journal ofMathe-

matical Biology, 57, 139–159.
Benhamou, S. (2014) Of scales and stationarity in animal movements. Ecology

Letters, 17, 261–272.
Beyer, H.L., Gurarie, E., Borger, L., Panzacchi, M., Basille, M., Herfindal, I.,

Van Moorter, B., Lele, S. & Matthiopoulos, J. (2015) ‘You shall not pass!’:
quantifying barrier permeability and proximity avoidance by animals. Journal

of Animal Ecology, 85, 43–53.
Boyce, M.S. & McDonald, L.L. (1999) Relating populations to habitats using

resource selection functions.Trends in Ecology &Evolution, 14, 268–272.
Boyce, M.S., Mao, J.S., Merrill, E.H., Fortin, D., Turner, M.G., Fryxell, J.M. &

Turchin, P. (2003) Scale and heterogeneity in habitat selection by elk in Yel-

lowstoneNational Park.Ecoscience, 14, 421431.

Boyce, M.S., Johnson, C.J., Merrill, E.H., Nielsen, S.E., Solberg, E.J. & Van

Moorter, B. (2015) Can habitat selection predict abundance? Journal of Animal

Ecology, 85, 11–20.
Codling, E.A., Plank,M.J. & Benhamou, S. (2008) Randomwalkmodels in biol-

ogy. Journal of the Royal Society Interface, 5, 813–834.
Compton, B., Rhymer, J. & McCollough, M. (2002) Habitat selection by wood

turtles (Clemmys insculpta): an application of paired logistic regression. Ecol-

ogy, 83, 833–843.
Duchesne, T., Fortin, D. & Courbin, N. (2010)Mixed conditional logistic regres-

sion for habitat selection studies. Journal of Animal Ecology, 79, 548–555.
Duchesne, T., Fortin, D. & Rivest, L. (2015) Equivalence between step selection

functions and biased correlated random walks for statistical inference on ani-

malmovement.PLoSONE, 10, e0122947.

Elton, C.S. (1927, 2001) Animal ecology. University of Chicago Press, Chicago,

IL,USA.

Fagan, W. & Calabrese, J. (2014) The correlated random walk and the rise of

movement ecology.Bulletin of the Ecological Society of America, 95, 204–206.
Fieberg, J. (2007) Kernel density estimators of home range: smoothing and the

autocorrelation red herring.Ecology, 88, 1059–1066.
Fordham, D.A., Shoemaker, K.T., Schumaker, N.H., Akc�akaya, H.R., Clisby,

N. & Brook, B.W. (2014) How interactions between animal movement and

landscape processes modify local range dynamics and extinction risk. Biology

Letters, 10, 20140198.

Forester, J.D., Im, H.K. & Rathouz, P.J. (2009) Accounting for animal move-

ment in estimation of resource selection functions: sampling and data analysis.

Ecology, 90, 3554–3565.
Fortin, D., Beyer, H.L., Boyce, M.S., Smith, D.W., Duchesne, T. & Mao, J.S.

(2005) Wolves influence elk movements: behavior shapes a trophic cascade in

YellowstoneNational Park.Ecology, 86, 1320–1330.
Gail, M.H., Lubin, J.H. & Rubinstein, L.V. (1981) Likelihood calculations for

matched case-control studies and survival studies with tied death times.Biome-

trika, 68, 703–707.
Getz, W.M. & Saltz, D. (2008) A framework for generating and analyzingmove-

ment paths on ecological landscapes. Proceedings of the National Academy of

Sciences of the United States of America, 105, 19066–19071.
Hjermann, D.Ø. (2000) Analyzing habitat selection in animals without well-

defined home ranges.Ecology, 81, 1462–1468.
Johnson, D.S., Hooten, M.B. & Kuhn, C.E. (2013) Estimating animal resource

selection from telemetry data using point process models. Journal of Animal

Ecology, 82, 1155–1164.
Jonsen, I.D., Myers, R.A. & Flemming, J.M. (2003) Meta-analysis of animal

movement using state-spacemodels.Ecology, 84, 3055–3063.
Kareiva, P.M.& Shigesada, N. (1983) Analyzing insect movement as a correlated

random-walk.Oecologia, 56, 234–238.

Keating, K.A. &Cherry, S. (2009)Modeling utilization distributions in space and

time.Ecology, 90, 1971–1980.
Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D. &

Morales, J.M. (2012) Flexible and practical modeling of animal

telemetry data: hidden Markov models and extensions. Ecology, 93,

2336–2342.
Latombe, G., Fortin, D. & Parrott, L. (2014) Spatio-temporal dynamics in the

response of woodland caribou and moose to the passage of grey wolf. Journal

of Animal Ecology, 83, 185–198.
Lele, S.R., Merrill, E.H., Keim, J. & Boyce, M.S. (2013) Selection, use, choice

and occupancy: clarifying concepts in resource selection studies. Journal of

Animal Ecology, 82, 1183–1191.
Lima, S.L. & Zollner, P.A. (1996) Towards a behavioral ecology of ecological

landscapes.Trends in Ecology &Evolution, 11, 131–135.
Manly, B.F.J., McDonald, L.L., Thomas, D.L., McDonald, T.L. & Erick-

son, W.P. (2002) Resource selection by animals: statistical design and anal-

ysis for field studies, 2nd edn. Kluwer Academic Publishers, Dordrecht,

Netherlands.

Matthiopoulos, J. (2003) The use of space by animals as a function of accessibility

andpreference.EcologicalModelling, 159, 239–268.
McCracken, M.L., Manly, B.F.J. & Heyden, M.V. (1998) The use of discrete-

choicemodels for evaluating resource selection. Journal of Agricultural, Biolog-

ical, and Environmental Statistics, 3, 268–279.
McDonald, L., Manly, B., Huettmann, F. & Thogmartin, W. (2013) Location-

only anduse-availability data: analysismethods converge (G.Hays, Ed.). Jour-

nal of Animal Ecology, 82, 1120–1124.
Merkle, J., Fortin, D. & Morales, J. (2014) A memory-based foraging tactic

reveals an adaptive mechanism for restricted space use. Ecology Letters, 17,

924–931.
Moorcroft, P.R., Lewis, M.A. & Crabtree, R.L. (2006) Mechanistic home

range models capture spatial patterns and dynamics of coyote territo-

ries in Yellowstone. Proceedings of the Royal Society B, 273, 1651–
1659.

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. &

Smouse, P.E. (2008) A movement ecology paradigm for unifying organismal

movement research. Proceedings of the National Academy of Sciences of the

United States of America, 105, 19052–19059.
Northrup, J., Hooten, M., Anderson, C.R. Jr & Wittemyer, G. (2013) Practical

guidance on characterizing availability in resource selection functions under a

use-availability design.Ecology, 94, 1456–1463.
Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J.

(2008) State-space models of individual animal movement. Trends in Ecology

&Evolution, 23, 87–94.
Potts, J.R.,Mokross, K. & Lewis, M.A. (2014b) A unifying framework for quan-

tifying the nature of animal interactions. Journal of the Royal Society Interface,

11, 20140333.

Potts, J.R., Bastille-Rousseau, G., Murray, D.L., Schaefer, J.A. & Lewis, M.A.

(2014a) Predicting local and non-local effects of resources on animal space use

using a mechanistic step-selection model.Methods in Ecology and Evolution, 5,

253–262.
Rhodes, J.,McAlpine, C., Lunney, D. & Possingham,H. (2005) A spatially expli-

cit habitat selection model incorporating home range behavior. Ecology, 86,

1199–1205.
Schl€agel, U. & Lewis,M. (2015) Detecting effects of spatial memory and dynamic

information on animal movement decisions. Methods in Ecology and Evolu-

tion, 11, 1236–1246.
Thurfjell, H., Ciuti, S. & Boyce, M.S. (2014) Applications of step-selection

functions in ecology and conservation. Movement Ecology, 2, 4.

Turchin, P. (1991) Translating foraging movements in heterogeneous envi-

ronments into the spatial distribution of foragers. Ecology, 72, 1253–
1266.

Turchin, P. (1998) Quantitative analysis of movement. Sinauer, Sunderland,

MA.

Van Moorter, B., Visscher, D., Herfindal, I., Basille, M. & Mysterud, A. (2013)

Inferring behavioural mechanisms in habitat selection studies – getting the

null-hypothesis right for functional and familiarity responses. Ecography, 36,

323–330.
Warton, D. & Aarts, G. (2013) Advancing our thinking in presence-only and

used-available analysis. Journal of Animal Ecology, 82, 1125–1134.

Received 18August 2015; accepted 4December 2015

Handling Editor: Luca B€orger

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 7, 619–630

Integrated step selection analysis 629



Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Appendix S1.From step selection to utilisation distribution.

Appendix S2. Inferring step-length distributions.

Appendix S3.Deriving an iSSA likelihood function.

Appendix S4. iSSA practical user guide.

Appendix S5. Simulation experiments.

Appendix S6.Evaluating the iSSA parameter identifiability and estima-

bility.

Appendix S7. b7 and b8.

Appendix S8.Predictive performance.

Appendix S9. Interpreting q.

Appendix S10.Habitat selection and utilisation distribution.

Appendix S11.Appendices reference list.

© 2015 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Methods in Ecology and Evolution, 7, 619–630

630 T. Avgar et al.


